2018-12-25

為什麼開放連結資料(Linked Open Data/LOD)的資料溯源(Provenance)很重要?







一個基本原因,在於我們對於後設資料品質(metadata quality)的不滿意:

從單純的欄位值出現亂碼、空值、矛盾,資料重複、名稱模糊、欄位定義混淆、編碼不一致,或資料的語意描述不是太過薄弱(資訊不足、缺乏必要欄位)、不然就是語意超載(一個欄位包含太多語意)

更進一步的觀察LOD現況,在數位化資料轉換更新與整合過程中,
  1. 往往無法保持原始資料的完整性: 如不同資料模型與資料庫間資料的轉換、異質資料來源的跨平台分散式處理。
  2. 錯誤使用國際語彙標準: 如語彙標準中類別(Class)與屬性/謂詞( Property )的誤用、違反資料模型中定義域(Domain/Type)與值域(Range/Value)的規範、以及上下階層語意的矛盾等。
也因此當我們不得不贊同Van Hooland Verborgh2014)說「沒有完全乾淨的後設資料」時,頓時難掩我們失落的沮喪。事實上資料清理工作可能發生在進行LOD前的前處理,也可能在完成LOD後的後處理。時間、經費、人力均會影響資料清理與品質。

關鍵是,愈早規劃後設資料品質,資料的價值才可能永續。

台灣的文化資源LOD 剛開始萌芽,例如Open Data Web台中學資料庫鏈結開放資料平台、以及近期國家級推動的前瞻基礎建設:文化部國家文化記憶庫等。然而相對國際LODLAM(Linked Open Data in Libraries, Archives, and Museums)LAMLOD發展則仍顯落後。幸運的是若能吸取過往錯誤經驗,揚棄沉滯的老套作法,在啟動計劃初期,即能取得後設資料品質管理的平衡,那麼「在後的將要在前」也不難期待。

令人意外的是,簡單並忠實的描述不同脈絡階段的人、時、地資訊,即可提供後設資料好的資料品質管理。而這也就是歷史文化學者Meroño-Peñuela 等人( 2014) 提出資料溯源(Provenance)是一個解決的方向。以下我們用「小飛的故事: 一隻40年前聖誕節在台中公園飛舞的蝴蝶來說明,為何透過不同階段脈絡的人、時、地簡約的資訊架構,即可清晰簡單的描述W3C複雜的資料溯源知識本體推薦標準 (PROV-O)基本概念。


蝴蝶小飛的數位化歷史過程,導引我們同樣看待文化資產物件數位化的人、時、地資訊。今日我們都希望能利用LOD技術讓機器快速大量的語意化資料、整合分散式資料庫、連結全球語意網知識,同時又要邁向公眾協力文化記憶,因此提供機器每一個文化物件的後設資料溯源(Provenance),就像是在藝術品拍賣會中,每一個珍貴的藝術品,它的拍品出處必需追溯物品來源以及上手物主,而保證欄、編製圖錄則需標明藝術家或創作人、製作年份、持有轉手人紀錄、參展紀錄、相關記述出版物等。換言之,後設資料溯源就是數位化資料的品質保證書。


參考資料:
  1. Meroño-Peñuela, A., Ashkpour, A., Van Erp, M., Mandemakers, K., Breure, L., Scharnhorst, A., ... & Van Harmelen, F. (2014). Semantic technologies for historical research: A survey. Semantic Web, 6(6), 539-564.
  2. Van Hooland, S., & Verborgh, R. (2014). Linked Data for Libraries, Archives and Museums: How to clean, link and publish your metadata. London: Facet Publishing.
  3. 黃韋菁、 李承錱、 莊庭瑞, (Andrea Wei-Ching Huang,  Cheng-Jen Lee and Tyng-Ruey Chuang), 結構資料的再次使用:語意、連結與實作 (Reuse of Structured Data: Semantics, Linkage, and Realization), 圖書館學與資訊科學(Journal of Library and Information Science) 43 (1), 7-46, 2017, DOI: 10.6245/JLIS.2017.431/722
Citation Information: 黃韋菁 (2018) 為什麼開放連結資料(Linked Open Data/LOD)的資料溯源(Provenance)很重要? URL: http://andrea-index.blogspot.com/2018/12/provenance.html

2018-10-27

Revisit: Reuse of Structured Data: Semantics, Linkage, and Realization (2)




(continue from part I) / Library and Information Science, 43.1 (2017): 7-46. / [[中文]]


RESEARCH HIGHLIGHTS: 

# An old record is not a data but now defined as a new semantic dataset. 
i.e. its triples, graphs, links, file formats ...
i.e. its revised, vocabulary encoded versions ...
ex. data:d2148340 a dcat:dataset.
#files:json-ld, ttl, XML

#
A new method to curate, publish & visualize LOD graphs via CKAN portal.
i.e. two models for one dataset published in two views.
ex. data:d2148340 a dcat:dataset. # Dublin Core @schema1
ex. data:d2148340 a data:Refined. # more semantics@schema2

#
Validation & Reproducibility: Provenance and Contexts are in details.

Practices

Example: data:d2148340 (click to enlarge)
We then make use of structured records (XML files) from a digital archive catalogue, and convert the records into semantically rich and interlinked resources on the Web. This is realized as a unified Linked Data catalogue to several digital archive collections. Our work results in a LOD catalogue (data.odw.tw) available to the public at the website . The following five parts are involved in realizing this website. 


A catalogue record, about a species of Pleione Formosana (data:d2148340), is used throughout in the paper as an example to demonstrate the way we model, convert, and represent the semantics of a structured record.

R4R Ontology (click to enlarge)
Part 1: Exploring data reuse relations in a shared context -- We review our previous research about the Relation for Reuse Ontology (R4R). In particular, we provide mechanisms for reusing article, data, and code with some flexibility of encoding provenance and license information.

Part 2: Comparing two different data conversion approaches to providing LOD for an archive catalogue -- We show two different scenarios: (1) The LOD catalogue is converted directly from a relational database, and (2) the LOD catalogue is generated from a series of format conversions --- from XML to CSV, and then to RDF. 

KB links Example (click to enlarge)
Part 3: Data profiling, cleaning and mapping -- We demonstrate format conversion processes, and we discuss the pros and cons of various ways in handling broken links in source datasets. In addition, we mapped and linked catalogue records to three external knowledge bases: GeoNames, Wikidata, and Encyclopedia of Life.  

Part 4: Using CKAN as a Linked Data platform -- We briefly introduce CKAN, an open source web-based data portal software package for curating and publishing datasets. CKAN provides data preview, search, and discovery, especially with regard to geospatial datasets. We built several extensions to CKAN in order to deposit, publish, browse, and search Linked Data. Various Linked Data representations of a catalogue record --- Turtle, RDF/XML, and JSON-LD --- can all be downloaded and reused.

Part 5: Designing an ontology for data representation and reuse -- We design an ontology voc4odw which includes the following 3 modules:

(1) The Core Model. It is comprise of a data model and a conceptual model. 




The data model represents key data structure and relation. It is a framework to illustrate data source,derivation, and provenance.

The voc4odw Data Model (click)
The conceptual model incorporates Simple Knowledge Organization System (SKOS); it also connects to key event concepts. The conceptual model allows for data contextualization using common and domain knowledge vocabularies.



(2) The Curation Model. It is responsible for disclosing the identification, classification, and publication of structured records at a curation platform, such as the classification of themes, the assignment of data identifiers, and the publication of datasets.

(3) A vocabulary voaf:Vocabulary. It is defined as "A vocabulary used in the Linked Data cloud", from the Vocabulary of a Friend . This module is to relate the Core Model to external common vocabularies. Some hierarchy relations between different external vocabularies can be traced with this vocabulary.


voc4odw ontology
Common Knowledge
Prefix
Namespace
Description
cc
http://creativecommons.org/ns#
csvw
http://www.w3.org/ns/csvw#           
dc
dcat
dct
5.       DCMI Metadata Terms
dctype
http://purl.org/dc/dcmitype/
6.       DCMI Type Vocabulary
event
http://purl.org/NET/c4dm/event.owl#
7.       Event Ontology
foaf
geo
http://www.w3.org/2003/01/geo/wgs84_pos#
gn
10.     GeoNames Ontology
gns
11.     GeoNames Entity
lcsh
http://id.loc.gov/authorities/subjects
org
prov
r4r
schema
16.     Schema.org
skos
time
http://www.w3.org/2006/time#
18.     W3C  Time Ontology
voaf
http://purl.org/vocommons/voaf#
wde
http://www.wikidata.org/entity/
20.     Wikidata Entity
 Domain Knowledge
aat
http://vocab.getty.edu/aat/
dwc
2.       Darwin Core Terms
dwciri
3.       Darwin Core terms
eol
4.       The Encyclopaedia of Life (EOL)
txn
http://lod.taxonconcept.org/ontology/txn.owl#
Local Namespace
voc
http://voc.odw.tw/ontology#  
agent
article
code
data
5.      Linked Data for ODWeb
evt84
6.      Event Entity in ODW
project
7.      Project Entity in ODW
r1 (n)
http://data.odw.tw/r1/   (r2, r3…)
refined
http://data.odw.tw/refined/
catdat
http://catalog.digitalarchives.tw/

2018-09-05

Revisit: Reuse of Structured Data: Semantics, Linkage, and Realization (1)


RESEARCH HIGHLIGHTS: 

# An old record is not a data but now defined as a new semantic dataset. 
i.e. its triples, graphs, links, file formats ...
i.e. its revised, vocabulary encoded versions ...
ex. data:d2148340 a dcat:dataset.
#files:json-ld, ttl, XML

#
A new method to curate, publish & visualize LOD graphs via CKAN portal.
i.e. two models for one dataset published in two views.
ex. data:d2148340 a dcat:dataset. # Dublin Core @schema1
ex. data:d2148340 a data:Refined. # more semantics@schema2

#
Validation & Reproducibility: Provenance and Contexts are in details.

Introduction

In order to enhance the reuse value of existing datasets, it is now becoming a general practice to add semantic links among the records in a dataset, and to link these records to external resources. The enriched datasets are published on the Web for both the human and the machine to consume and re-purpose. 


Open Data Web (data.odw.tw)
In the paper, we make use of publicly available structured records from a digital archive catalogue, and we demonstrate a principled approach to converting the records into semantically rich and interlinked resources for all to reuse. 

While exploring the various issues involved in the process of reusing and re-purposing existing datasets, we review the recent progress in the field of Linked Open Data (LOD), and examine twelve well-known knowledge bases built with a Linked Data approach. We also discuss the general issues of data quality, metadata vocabularies, and data provenance.


Different Contexts in Different Data Curation Phases

The concrete outcome of this research work is the following: 
  1. a website/repository (Open Data Web) that hosts more than 840,000 semantically enriched catalogue records across multiple subject areas, 
  2. a lightweight ontology voc4odw for describing data reuse and provenance, among others, and 
  3. a set of open source software tools available to all to perform the kind of data conversion and enrichment we did in this research. We have used and extended CKAN (The Comprehensive Knowledge Archive Network) as a platform to host and publish Linked Data. 
Our extensions to CKAN is open sourced as well. As the records we have drawn from the originally catalogue are released under the Creative Commons licenses, the semantically enriched resources we now re-publish on the Web are free for all to reuse as well. Review of Twelve Knowledge Bases We begin by first examine twelve knowledge bases built with a Linked Data approach. 

Five of them are built by domain knowledge experts (OpenCyc, Getty Art and Architecture Thesaurus (AAT), Getty Thesaurus of Geographic Names (TGN), and Ordnance Survey/ Open Names), six of them are collaborative databases (FreebaseYAGO, DBpediaWikidataLinkedGeoDataGeoNames), and the last one is about ecological observations based on expert and community collaborations (Encyclopedia of Life/ EOL/ TraitBank). We further compare datasets about geospatial entities with controlled vocabularies: Getty TGN, Open Names (Ordnance Survey), DBpediaPlace*(instances of dbo:Place), LinkedGeoData, and GeoNames.

To make good reuse of structured data, ones need to first deal with the problem of data quality. Currently there exist different evaluation criteria, with various techniques for measuring the quality of information, data, metadata, and Linked Data. 


LOD Knowledge Bases/Graphs (2016/11/06 sparql query results) /
LOD Knowledge Graph
since
organization
domain
resource
triples
update frequency
data source


Expert Lead
(top down)
2008
business
cross-domain
41,029
2,412,520
over one year
owner
2014
business
art &
45,327
13,259,890
3-5 times a year
owner
2014
business
place name
2,495,100
204,614,290
owner

2010
government
geography

2,938,707
58,377,209
depending
owner
2015
government
place name
925,157
21,360,688
twice a year



Collective
Collaboration
(bottom up)
2008
business
cross-domain
49,947,799
3,124,791,156
close din 2015
2007
university
cross-domain
5,130,031
1,001,461,786
over one year
2007
university
cross-domain
5,109,890
402,086,316
about one year/
some in Live.
DBpediaPlace*
2007
university
place (name)
816,252
53,895,946
2012
NGO
cross-domain
19,367,201
1,371,170,022
real time
2010
university
geography
> 3 billion
1,384,887,500
about one year
2010
NGO
place name
>6.2 million
93,896,732
real Time
data collaboration/ partly integrated with others
Mix Mode
2014
association
biodiversity
10,753,384
359,292,712
statistic data/ a week
research databases integration/ partly collaborated


We review four papers on data quality and systematically compare their evaluation criteria. Moreover, data provenance --- contextual metadata about the source and use of data --- has proven to be fundamental for assessing authenticity, enabling trust, and allowing reproducibility. Thus, we examine key mechanisms of data provenance before we move forward to discussing LOD applications.